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Abstract--The constraints implied by the second law of thermodynamics have been used to check the 
validity of two-fluid models. It has been found that all current generation muitiphase computer codes 
violate these constraints. This implies that the physical models used in these codes are inadequate. 
Recommendations are given for how to improve two-fluid modeling assumptions and a relatively simple 
set of closure conditions which satisfy the second law of thermodynamics is presented. 
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INTRODUCTION 

The second law of thermodynamics can be used to assess the validity of two-phase flow models. 
Previous studies have been performed in which the entropy constraint for the mixture as a whole 
was considered. However, the phasic entropy constraints must also be satisfied for each phase 
separately. 

Green & Naghdi (1971) and Bedford & Ingram (1971) have presented two different methods that 
have been developed for applying phasic entropy constraints. Green & Naghdi (1971) introduced 
the free energy function (either that of Gibbs or Helmholtz may be used) and demonstrated that 
the entropy equation placed limits on the constitution of the phasic free energy. For engineering 
applications, this approach is not particularly useful, since it does not yield constraints on the state 
variables of interest. 

Bedford & Ingram (1971) substituted constitutive equations into the Clausius-Duhem inequality 
in such a way that the variables of interest appear explicitly. They then used the definition of an 
admissible thermodynamic process to conclude that the coefficients of those variables which appear 
only once in the equality must be equal to zero. When the form of the constitutive equations are 
known, this approach provides an excellent method for developing constraints on those constitutive 
equations. 

We have used a similar procedure in this work. The Gibbs equation is used to combine the 
entropy equation and the thermal energy equation to obtain an entropy constraint which is devoid 
of derivatives of the phasic specific entropy. The result is then used to evaluate the ability of 
two-fluid two-phase flow models to satisfy the second law. 

The local instantaneous entropy equality will be derived first. This equation will then be 
appropriately averaged and combined with the total energy equation, the mechanical energy 
equation and the Gibbs equation to yield the desired form of the entropy constraint. 

DISCUSSION 

The local instantaneous continuity, momentum, total energy and entropy equations of phase-k 
are (Ishii 1975): 

continuity, 

rn omen t urn, 

~pk/~t + V'(PkVk) ---- 0; [1] 

~(pkVk)/~t  + V' (PkVkVk) -- Pkgk -- V'Tk -- 0; 
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energy, 

8[p,(u, + 0.5V,'Vk)]/t3t + V'[pkVk(Uk + 0.5Vk'Vk)] + Pkgk'Vk -- V'(Tk'V,) + V'q~ - q~' = 0; [3] 

entropy, 

c3(PkSk)/t3t + V'(PkSkVk) + V ' ( ~ / T k )  - q~' /Tk = Ak t> 0. [4] 

The mechanical energy equation is formed by taking the dot product of the velocity (Vk) with 
the momentum equation [2]. Subtracting the resulting mechanical energy equation from the total 
energy equation yields the so-called internal energy equation: 

t~(PkUk)/t~t + V'( f lkUkVk)  "Jr" V.q~ - q~' - Tk : VVk = 0. [5] 

The Gibbs equation expressed in terms of the material derivatives of the internal energy, Uk, the 
entropy, s~, and the density Pk, may be combined with the continuity equation to obtain 

DUk/Dt = Tk DSk/Dt - (Pk/P,) V" Vk. [6] 

Combining [6] and [5], and making use of the continuity equation [1], we obtain the following 
entropy equality: 

Pk Dsk/Dt + V" (q~/Tk) -- q~'V(1/T,) - q~'/T k - (I/T~)'¢ k : VV k = 0, [7] 

where use has been made of the constitutive assumption 

Tk = --phi + ~k, 

where T k is the stress tensor, p is the pressure and tk is the viscous stress tensor of phase-k; I is 
the identity tensor. We may combine [7] with [4] to obtain 

C~(pkS,)/C3t + V ' (p ,  SkV,) + V" (q~/T,) - q~'/T k = Ak, [8a] 

where 

Ak = q~ "V(l/Tk) + (1/Tk)*k : VVk >~ 0. [8b] 

Although the terms e~'V(1/Tk) and (1/Tk)%:VVk are not easy to evaluate, [8a,h] are advan- 
tageous in that they give the conditions under which the entropy equation becomes an equality. 

Let us now derive an appropriate form of the averaged entropy equation. This work makes use 
of the ensemble average, defined by Drew & Wood (1985) to be 

<f(x,  t ) )  = .t'uf (x, t, #) din(#), 

where rn(/~) is the measure (probability) of observing process/~, and M is the set of all processes. 
However, the results developed herein apply to any rigorous form of averaging. 

Using the notation of Bour6 & Delhaye (1981), the ensemble-averaged momentum equation of 
phase-k is (Arnold 1988) 

,~ (~k< p~ >~<v~ >x~)/~t + v.  (~< p~ >~<V~ >x'<v~ >~) 

= V'[~k(<Tk >~ + T~)] + ak< P, >xgk + M,  + FkV~, [9] 

where: 

and 

<T k >X--average stress tensor, 
T~--Reynolds  stress tensor, <XkPkV'kV'k)/~k, 
M~--interfacial momentum source, -- <Tk" VXk >, 
Fk--mass generation rate, ( Pk (Vk -- Va)" VXk >, 
gk--body force, 

1, ifphase-k is at location x at time t, 
Xk(X, t)--phase indicator function O, otherwise, 

~k--average of the phase indicator function, (Xk >, 

V~--velocity fluctuation, V k -  <Vk >x9. 
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Terms of the form F~(~ are averages weighted by the interfacial 
r ~  = <pk~(V~ - V~).VX~>. 

Similarly, the averaged total energy equation is 

c~ [%( Pk )X(<Uk )~n + 0.5<Vk )x,. (V~)xp + U~)]/Ot + V" [%<p >,~<V>~'((u )~' 

where: 

and 

m a s s  

+ o.5<v~ ) x,. <v~> ~, + u~o)] = V.[~(<T~ > ~ + r~°) • <V~> ~'] - V. ~(<~ff >~ + q~) 

+ ~k(q ~' )~ + ~k( Pk )Xgk" (V)~ p + Ek + Wk~ + rk [U~ + 0.5(Vk" Vk)i ], 

uk--internal energy, 
U~--turbulent kinetic energy, 0.5(Xk Pk V'k" V'k >/O~k(pk >~, 

( ~  >~----average heat flux, ( X k ~ ) / % ,  
q~---composed of various energy terms, ~ + ~ + ~ + ~ ,  

= - < x ~ .  v 'k  >/~, 
cg = ½<x~p~v~v~. v~ >/~,, 
q~ = <x~p~V~u;~ ) /~ ,  

Xk--viscous stress tensor, 
q~'~volumetric heat generation rate, 
Ek--interfacial heat source, <q~. VXk ), 

transfer: 

[10] 

w~--so-called interfacial work,t - (Tk" Vk" VXk >. 

The mechanical energy equation is obtained by taking the dot product of the momentum 
equation with the average velocity. Expanding derivatives in the total energy equation and 
subtracting the mechanical energy equation, one obtains a form of the averaged internal energy 
equation: 

~k(Pk> x D((Uk> xp -~- UR~)/Dt = ~tk(Tk > x : V ( V k >  xp + O~k TRe : V<Vk> xp -~- Wki -- M k. (Vk>  xp 

- V" ~k(q'~ >x _ V" ~kq~ ~ + ~g(q~' >~ + El 

+ Fk[(Uk, -- <Uk >x,) + ½(Vk" Vk), -- (Vk)," <Vk >x, + ½<Vk >xn. <Vk >xa __ U~]. [I l] 

The density-weighted average internal energy can now be expressed in terms of thedensity- 
weighted average entropy and the phase-weighted average density. Expanding the internal energy 
with a first-order Taylor series in terms of entropy and density perturbations and then averaging 
yields (Arnold 1988): 

% >~p = u~(% >% < pk >~) + <(~ud~sk)s; >~P + <(OUk/OPk)?'k >x,,. 

Noting that (Callen 1985) 

OUk/~Sk = Tk 

du~/dPk = Pk/P ~, 

and 

we obtain 

(uk> ~p = u,((sk> ~p, (pk> x) + (Tk, S'k> ~p + ((pk,/(pk>X2)p'k> ~p, [12] 

where Tk, and Pk, are evaluated a t  the average entropy and density. 
The term (Tk, s'k> xp is zero because Tk, is a constant and S'k=Sk--(S,> xp, thus <s;>XP=0. 

Therefore, 

<uk> ~" = uk(%> ~" , <pk> ~) + (p~/<pk>~)<p'~> ~, . [13] 

fActually this term is a power production density term. 

DMF 16/3==-I-I 
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Taking the material derivative of both sides, one obtains 

D(Uk)XP/Dt = TksD(Sk)XP/Dt + (Pks/(Pk)X2)D(pk)X/Dt + D[(pk~/<pk)x2)(p'k)XP]/Dt. [14] 

The averaged entropy equation is obtained by multiplying [8a,b] by the phase indicator function 
and averaging. Expressed in terms of the material derivative of entropy, this gives (Arnold 1988): 

O~k< Pk >x D<Sk >XV/D t = _ V" [~k((q)~/T~> + ak( Pk >X(s;,V~, >xP)] 

-+- ~k<q'~' /Tk  > x + <(q~ T k ) ' W X k  > -¢- rk(Ski - <Sk> xv) 

+ \'/Yktlk " "  V(1/Tk)> + <Xk(1/Tk)~k " VVk>, [15] 

where we know that from [8b], <Xkq~'V(l/Tk)> + <Xk(1/Tk)'tk:VVk>)>10. Substituting [14] and 
[15] into [11], we obtain the averaged entropy equation: 

~k(<Tk >x + R . . . .  Tk ) V<Vk>XP q - W , i - - M k ' < V k > X P +  Tk~V'<Xkqk/Tk> 

Iv x I" x / • x.o ¢Vl x --V'ak((qk> +qk+q~+q~+qk)+Tk~V'~k<Pk> (SkVk> +ak(qk > 

1¢v T l! - Tk.,<Xkqk /Tk>+Ek--  k~<(qk/Tk)'VXk> 

-- ~k< Pk >x D[(&~/< & >.~2)< p~ >x~l/D t _ (~kPks/< P* >0D< Pk >~/Dt 

- ~k(Pk> ~ DUR~/Dt + Fk[(Uk~ -- (Uk> xp) -- U Re + (1/2)(Vk'Vk)i 

_ <V k >xp "(Vk)i + 1/2(V k >xp. (Vk >~v _ Tks (Ski -- <Sk >xp)] 

= Tk~[<Xkq~'V(1/Tk)> + <Xk(l/Tk)Zk : VVk>] >~ 0. [161 

This form of the second law is a generalization of the corresponding results for single-phase flow 
(Aris 1962). While the physical meaning of some of these terms is clear, others are more obscure. 

It is advantageous now to consider grouping some of these terms, and partitioning others. If  use 
is again made of the constitutive assumption 

Tk = - -pk  I d- "t k . 

The interfacial work term becomes 

W~ = <&Vk'VX~> - <~k'V~'VXk>. 

This can also be expressed as 

Wk~ = <Vk >~ "((Pk >~ I -- <*k >~)' Vaa + W~i + <V k >i • (Mkp + Mkt), [17] 

where: 

M~,--interfacial pressure force, <(Pk -- <P~ >0" VXk >, 
M,,--interfacial shear force, - <(*k -- <Xk >i)'VXk >, 

and 

W~'i--interfacial "extra" work term, <(Vk -- (Vk)i)" 

Similarly, the phasic interfacial momentum source term 

Mk = Mkp + Mkt + ((Pk >~1 -- [181 

Under normal flow conditions, perturbations of the fluid state are expected to be relatively small; 
i.e. the perturbation in any state variable divided by the average value of that variable is small. 
Fluid properties which are dependent upon the state variables will thus also have relatively 
small perturbations. Hence, the product of perturbations of two state variables, a state variable 
and a fluid property, or of two fluid properties may be assumed to be small enough to ignore. 

Products of velocity perturbations on the other hand are not necessarily small. Indeed, an 
instantaneous perturbation in the velocity of a fluid may lx greater than the average velocity. Thus, 
all products of velocity perturbations will be retained. Similarly, products of velocity perturbations 
with perturbations of fluid state variables or properties are also retained. 

(pkl -- Xk)' VXk >. 

(Mk) may be expressed as 
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Neglecting terms which are quadratic in fluid property perturbations, one obtains (Arnold 1988): 

<uk) ~p = u~, [19a] 

(Tk) ~p = r,~ [19b] 

Fk(u~ -- (uk ) ~p) + Tk~Fk((`Sk) ~p -- Ski) = Fkp~(p~ -- (`P,))~/(`Pk): ,  [20] 

Pk~- (Pk) x = 0, [21] 

(` X ,  q ~' ) - (` T, )X" (` Xk q'[ / Tk ) = 0, [22] 

~k( p~ ) (s~Vk) -- V" ~q~ = - ~,( pk )~(`s~V~, )~" V( T, )~, [23] < T , ) ~ V  . . . . .  

( T, )~" V" ~,(q~ / T, )~ - V" ~,(q~ )~ = - ~,(`q~ )~/(` T, )~P. V( T~ )~P [24] 

and 

<q~.vxk)  - < Tk )~<q;,/Tk" VX~ ) = <qg" VXk >< T~ )X/< T~ ) ~. [25] 

Substitution of [19]-[25] into [16] yields: 

~k(<~k)x + T~°) " D, + (M,p + Mkt)" (<V,)i  -- <Vk)x~) + W~ 

+ ((V,)i - (Vk)xP)" ((Pk)il -- (xk)i )" V~k - -  0 { k / <  Tk )~P<q~ )~' V( Tk )~P 

-- V" ~k (q]~ + q~ + q~) - ~k(Pk)~(,s ' ,V'k):"V<Tk) ~p -- ~k(,Pk) ~ DU~e/Dt 

+ (,Pk)>~ D°~*/Dt + Fk(Pk )x[ Pki -- 2(, Pk ) ~ / (  Pk )~2 + Fk [0.5(Vk" Vk)i -- (Vk)~P" (Vk) 

+ 0.5<Vk) x~" (V , )  ~p - U~ ~] = (`Tk)XP[(Xk~'V(1/Tk))  + ((Xk/Tk)xk : W k ) ]  >/0, [26] 

where, Dk is the phasic deformation tensor, given by 

D~ = o.5[v<v, ) ~  + (v<v~)~  y] .  [27] 

Let us now consider the Lagrangian form of the local instantaneous phasic entropy equation 
given by 

D(pksk)/Dt + V.(q~/Tk) -- q'[/Tk = q~'V(1/Tk) + (1/Tk)% :VVk >/ = 0. [28] 

This tells us that the rate of change of the specific entropy must exceed the entropy source, and 
that it does so by an amount equal to 

q~" V(1/T,) + (1/Tk)~k:VVk. 

This means that there may be energy transfer from the macroscale to the microscale that is in excess 
of that which can be accounted for by the "local instantaneous" parameters, 

- V.(q~/r,) + q~' lr , .  

We see a similar effect in the averaged entropy equation [26]. The rate of change of the specific 
averaged entropy must exceed the entropy sources, which are expressed in terms of averaged 
parameters. If all terms in this equation are properly constituted, then we should find that the 
resulting entropy equation is always satisfied. Alternatively, if the constitutive equations do not 
always satisfy the entropy equation, then we know that dissipation (i.e. energy transfer to the 
microscale) is not being correctly predicted. 

In a system of averaged balance equations, the solution of the energy equation will only be a 
valid solution for the energy partition of the system if all terms within the energy equation 
accurately model the desired phenomena. If the constitutive equations used to obtain closure for 
the system of equations do not accurately model dissipation, then they will yield an inaccurate- 
energy partition. 

The entropy equation is an inequality. Accordingly, one might expect that the inability of 
constitutive equations to satisfy the entropy equation implies that dissipation is being under- 
predicted. However, it can be shown (Arnold 1988) that the inability to satisfy the entropy equation 
can lead to either over-prediction or under-prediction of dissipation, depending on the flow 
situation. 
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Averaged flow, and particularly averaged multiphase flow, has more sources of dissipation than 
does the corresponding local instantaneous flow. Additional sources of dissipation include 
two-phase turbulent dissipation and interfacial dissipation. These add further complications to 
consideration of the second law. 

In order to assess the validity of [26], it can be shown (Arnold 1988) that the averaged entropy 
constraint is trivially satisfied for the exact constitutive equations which can be derived by a 
modified cell model averaging technique (Nigmatulin 1979) for the liquid phase of a bubbly 
two-phase flow of an inviscid liquid. 

It is worth noting that [26] accounts for both recoverable and nonrecoverable turbulent kinetic 
energy. In two-phase flows, one of the primary sources of turbulent kinetic energy is through 
interfacial work. These work terms appear in [26] as terms having the generalized form, <T : VVX>. 
Several of these terms appear because [26] has been partitioned into more recognizable terms. When 
interfacial work is performed on the continuous phase, these work terms are a positive source of 
dissipation. However, turbulent kinetic energy appears in the equation in the form of 
--O~k<Pk> x DUR¢/Dt, which during the production of turbulent kinetic energy acts to reduce the 
source of dissipation. Thus, we can see that turbulent kinetic energy acts to temporarily store 
energy. If later interfacial work acts to reduce the turbulent kinetic energy, then that energy may 
be reversibly recovered, and never actually appear as dissipation. If, however, turbulence is reduced 
by diffusion ( - V .  ~kgk), the rate of reduction in turbulent kinetic energy (-ak( P~ )x DURe/Dt) can 
result in dissipation. This dissipation represents the excess of that product less that which diffuses 
away. 

Computer Code Models 

Let us now consider the sets of two-fluid conservation and constitutive equations in use in some 
state-of-the-art transient two-phase flow codes. We will demonstrate that all such models violate 
the second law of thermodynamics. 

Our averaged entropy equation is based upon rigorously derived balance equations. The only 
terms that have been neglected are terms that we have demonstrated to be small under the 
circumstances of interest. The result is an entropy equation which we may partition as required 
to be compatible with the partitioning of any mathematically correct set of conservation equations. 

Unfortunately, the systems of conservation equations used in many computer codes are not 
complete. Some common inadequacies found within these codes include: 

(1) The energy equations do not include interfacial work. 
(2) The conservation equations disregard turbulent phenomena. 
(3) The systems of equations do not properly account for the interfacial energy and 

momentum transfers due to phase change. 
(4) The energy equation disregards turbulent kinetic energy and energy fluxes. 
(5) Viscous effects are disregarded. 

All codes investigated use one pressure for both phases so we may assume (Pk)i ~" ( P k )  x =P" 
Additionally, in all cases the following terms were neglected: W~i, (*k)i, qr + ~ + ~ and U~ ¢. 

Most codes also neglect kinetic energy and use either enthalpy or internal energy as the state 
variable in the energy equation. We derived the entropy equation starting with the ensemble- 
averaged total energy equation. It is also possible to derive an entropy equation starting with the 
averaged internal energy equation. Such an averaged entropy equation looks quite different from 
the entropy constraint equation given by [26]. However, it is possible to demonstrate that they are 
equivalent (Arnold 1988). For example, the entropy constraint derived from the internal energy 
equation does not contain interfacial work terms explicitly. However, it contains the term 

~k(Zk :VV;, )~. 

We may partition this term as 

O~k ( ~k : VVrk  ) x = V " ( Xk '~  k • VPk ) x _ Wkti _ M i t t .  ( V k ) i  - -  ( "~k  VPk " V " T, k ) x. 

The first term on the r.h.s, is the turbulent shear work (~ktl},), the second term is the viscous 
component of the interfacial work and the third term is the dot product of the interfacial viscous 
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drag force with the average interfacial velocity. These are all terms which appear explicitly in [26]. 
Thus, the dissipative terms explicitly present in the entropy equation given by [26] are present in 
the internal energy equation based form of the entropy equation. 

We will now apply the phasic entropy constraint equation [26] to the constitutive equations for 
the continuous liquid phase of a two-phase flow. Let us begin by considering the COMMIX-2 code. 

COMMIX-2 

The COMMIX-2 code (ANL 1985) is a three-dimensional computer code for the analysis of 
steady-state and transient single-phase and two-phase flows. It contains a 5-equation two-phase 
flow model and makes use of a mixture energy equation. 

If we compare the mixture energy equation used in COMMIX-2 to the complete mixture energy 
equation we find that all dissipation terms are disregarded by COMMIX-2. 

The COMMIX-2 constitutive equations for the continuous liquid phase are listed in table 1. 
Because of the donor-cell method that is used for the interfacial momentum flux in COMMIX-2, 

the entropy equation will be different depending on whether evaporation or condensation is 
occurring. Moreover, the interracial velocity of the liquid phase is treated by the same donor-ceU 
method. 

Let us now consider the entropy equation for the liquid phase where the accompanying vapor 
phase is undergoing condensation. The entropy constraint, with e representing the void fraction, is 

(1 - -  £)]~L V < V L  >xp : DL + K((V¢ >xp _ < V  L >xp). ( < V G  >xp - -  < V  L >xp) 

- <PL >x((Vc >xP -- <VL >xp.). VE -- (1 -- E)< PL >x< s [ V[ >xp. V< TL >xp _ (PL >x D~/Dt 

+ F <PL )x/< PL >x _ F [0.5(<V G > - <V L >) "(<V G > - -  <V L >)] ~ 0. [29] 

It should be noted that the flow work term, which is underlined in [29], does not appear in the 
energy equation used by COMMIX and should thus be set equal to zero in [29] to be consistent. 
However, as we will see, this term is necessary to satisfy the second law. 

Since for condensation F is negative, the term 

(1 - -  E ) • L V < V  L >xp : DL + K(VG - V L ) "  ( ~  G - -  V L )  - -  F [ 0 . 5 ( V  G - -  V L )  " ( ~ O  - -  V L ) ]  

is always positive. 
We expect that the turbulent entropy flux,/~' v,  \~p \aLV L / , is positive in the direction that the entropy 

decreases most rapidly. In fact, it is reasonable to constitute the turbulent entropy flux as 

<S ~ V~ >xo = -- ks V<s L >xp, 

where ks is a positive turbulent diffusivity coefficient for entropy transport. If we consider a case 
with uniform pressure, the Gibbs equation may be represented as 

dh = T ds. 

Table 1. COMMIX-2 constitutive equations for a con- 
tinuous liquid phase 

<'~L >x ffi -- [)IL V<VL >x] 

TL R' = 0 
ML p m O  

ML t = K(<V G >xp _ <V L >xp) 

<~>.'ffi0 

FV .= 5 F(v°)xp' 
L, [r<VL>Xp ' 

VLi = J<Vo 
(<VL >Xp, 

F <pL)X/(,pL)X=O 

for condensation 
for evaporation 

for condensation 

for evaporization 
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Using the relationship dh = Cp dT, we may represent this version of the Gibbs equation in terms 
of  temperature and entropy gradients as 

Vs = (cp /T)VT.  

Hence in [29] we may express minus the value of  the dot product of  the turbulent entropy flux with 
the temperature gradient as 

- (1 - e ) ( p L ) X ( s ~ V ' L ) x P ' V ( T L )  xv = (1 - -  E)(pL)Xks(cp/(TL)Xp)V(TL)':P'V(TL) ~p. 

This term is obviously positive, and will remain positive. This conclusion is valid as long as pressure 
gradients are not large (e.g. shocks). 

The material derivative of  the void fraction may be either positive or negative. We stated earlier 
that the mixture energy equation in COMMIX-2 disregarded the flow work term, F (~0 L ~ x / ( p L  ~x. 
In order to understand the implications of this assumption, we note that for uniform phasic 
pressure and density (as assumed in the COMMIX-2 code): 

F (PL)x/(  PL )x _ F (PL lPL)i = -- ((PL IPL)PL (VL -- V~)" VXL ), 

F (PL)" / (  PL )~ = -- (PL)~([(VL -- (VL)~;) + ((VL)xp _ V~)] " VXL ), 

F (PL)" / (PL )x = _ (PL)~[(V[" VXL ) -- 0~ ~Or -- (VL)~P" VE] 

and 

r (pL )"/ ( pL) x = (pL ) x De~Dr -- (pL ) x (V["  VXL ) .  [30] 

We see from [29] and [30] that the inclusion of  this phase change terms causes a cancellation 
which prevents the (pL)  x D e / D t  term from violating the second law. Additionally, [29] contains 
the term 

- ( P L ) X ( ( V ~ ) x ,  _ ( V L ) X ~ ) '  W .  

Assuming that for condensation the interfacial velocity is the average vapor phase velocity, we may 
constitute (PL)X(V[" VXL) in [30] as minus this term so that it also would not violate the second 
law. In fact, to be consistent with the donor-cell formulation of the interfacial momentum flux, 
we should constitute this term as 

~ - ( ( V ~ )  xp - (VL)XP)'VE, for condensation, 
(V~'VXL) 

0.0, for evaporation. 

Now let us consider the case of  the continuous liquid phase undergoing evaporation. For this 
case, the entropy equation becomes 

(1 -/~)]./LV(VL) xp : DL -- ¢ ( p L ) X ( s [ V L ) X p ' V ( T L )  xp -- ( P L )  ~ D e / D t  + F ( p L ) X / ( p t . )  X ~ O. [31] 

Again, we see that this equation cannot be satisfied for all possible two-phase flow situations. But, 
as can be seen in [30], inclusion of the underlined flow work term F (PL)X/(pL )x, can correct this. 
However, it should be noted that while the second law may be satisfied if flow work is properly 
included, the model used for interfacial velocity is inadequate, and should also be changed to 
improve model predictions. 

R E L A P 5  

The RELAP5 code is an advanced one-dimensional fast-running transient system analysis code 
designed for the analysis of light-water nuclear reactor (LWR) accidents. It is based on a 
nonequilibrium two-fluid hydrodynamic model. 

The RELAP5/MOD1 code (Ransom et al. 1982) uses a mixture energy equation while the 
RELAP5/MOD2 code (Ransom et al. 1985) used an energy equation for each phase. The 
conservation equations neglect turbulent stresses, turbulent kinetic energy, turbulent energy fluxes, 
convective heat flux, many interfacial momentum sources, interfacial work, viscous stress and 

volumetric heat generation. 
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Table 2. RELAP5 constitutive equations for a continuous liquid phase 

<'L >x = 0 
• r~ = o 

MLp 

MLp ffi 

where 

C =  

C =  

MLt 

(q[>X = 

FVc~= 

t i m  m 

<VL> i = 

C¢(1 - e)pm[Do<Vt>XO/Dt - DL<VG)XO/Dt] (MODI)  

C~(I - ~)p.[O<VL )~P/Ot -- d(Vo>X°/at] (MOD2) 

1 . 5 / e  - 1 . 0  E > 0.5 

0.5/(1 - ~) + ~/(1 - ~ )  E ~<0.5 

(I - E)<pL) ~ FIF(< Vo > ~° - (V L >xP) - (I - ~)(pL> x FWF< Zu > ~0 

0 

rvL~ = r(1 - ~.)< vo> ~o + r~m< VL > ~0 
0, for condensation 

1, for evaporation 

(l -- t/m)< Vo>~' + ~/m< Vt > ~° 
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The constitutive equations used by RELAP5 for the continuous phase are listed in table 2. It 
is significant to note that the flow work term, F(pL>/(PL >, is neglected in the internal energy 
equation in RELAP5. Substituting these into the entropy equation for the liquid phase, we obtain 
for evaporative flow, 

--(1 --E)(pL)~<sL V'L)~O'V<TL) ~o-  <pL)~De/Dt + F(PL)X/(pL)~>~O. [32] 

We se¢ again, as in the case of the COMMIX-2 code, the RELAP5 code requires the F (PL >/< PL > 
term in the energy equation if the second law is to be satisfied. 

For a condensing flow the entropy equation becomes: 

X P t X p  - (1 - ¢£)(PL) (SL VL> "V(TL)  x° - -  (PL)  x De/Dt  + F(pL>x/<pL) x 

- < p L > x ( < v o > x o -  < VL >~o).VE --_r [0.5(< Vo > ~ -  < VL >~)2] 

+ CE(1 - E)p~[Do(VL>Xa/Dt - DL(Vo>~'/Dt]((Vo> ~" - <VL> x:) 

+ (I - E)( ~L >x FIF(( Vc >~P - ( VL >xQ2 I> 0. [33] 

The RELAP5/MOD2 version of this equation differs only in that the virtual mass term contains 
only the partial time derivatives of the phase velocities rather than material derivatives. 

The first four terms are all either properly dissipative or we have discussed their implications 
previously. Since this equation is for condensing flow, F is negative. Also, be definition, the 
interracial friction factor, FIF, is always positive. Hence, the term, 

-F[½(< Vo> xp - < VL >xP) 21 + (1 -- E)<pL> x FIF((Vo > xp - (VL)~P) 2 

is never negative. The virtual mass force appears in the entropy equation as 

CE (1 -- E)tim [Do< VL )XP/Dt -- DL< Vo )Xp/Dt ] (< Vo >xP - ( VL )~P). 

For accelerating two-phase flow this term can be negative and can cause the second law constraints 
to be violated. This implies that somewhere within the balance equations, a term has been neglected 
which should result in an acceleration times the relative velocity in the entropy equation. Inviscid 
flow calculations (Arnold 1988) demonstrate the existence of the time derivative of the relative 
velocity times the relative velocity within the extra interracial work term, W~'. Additionally, the 
material derivative of the turbulent kinetic energy, a term appearing in the entropy equation, if 
properly constituted, will result in an acceleration times the relative velocity. We see that with the 
inclusion of the virtual mass force in the momentum equation we need some corresponding term(s) 
to prevent a violation of the entropy constraint. 
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In order for the RELAP5 constitutive equations to satisfy the entropy equation we must: 

(1) Include in the energy equation, and properly constitute, the term: 

__ F G < ?  L >x/< PL >x. 

This term should be constituted as previously recommended for the COMMIX-2 
code, [30]. 

(2) Either the interracial work must be included and constituted in such a way that 
it negates the virtual mass work appearing in the entropy equation, or the 
turbulent kinetic energy must be included and constituted properly. 

TRA C-PFI  /MOD 1 

The TRAC-PF1 code (LANL et al. 1986) is a thermal-hydraulic transient analysis code for the 
simulation of accidents in pressurized water nuclear reactors (PWR). The TRAC-BD 1 code (Taylor 
et al. 1984) is a boiling water reactor (BWRs) version of the same code. 

The conservation equations solved by the TRAC code in the three-dimensional reactor vessel 
are fairly standard multiphase conservation equations. In particular, they include the phasic 
continuity and momentum equations, and the vapor phase and mixture energy equations. The 
constitutive equations used for the continuous liquid phase are listed in table 3. 

These constitutive equations are sufficiently similar to those of  the COMMIX-2 code that  we 
can immediately recognize that the inclusion of the F<pL>x/<pL> x term in the internal energy 
equation will permit these constitutive equations to satisfy second law constraints. 

Prior to continuing, it is enlightening to discuss two aspects of current generation computer codes 
that this analysis has revealed. The phasic interfacial average velocity occurs numerous times in 
the entropy constraint, [26], which indicates that this velocity is an important parameter in 
satisfying the second law of thermodynamics. It is obvious that fluid at an interface does not move 
at the phase average velocity. Rather, it must move at some velocity that is between the phase 
average velocity of the two phases present at the interface. 

With the exception of RELAPS, all computer models examined use a donor-cell formulation for 
the interfacial velocity. Unfortunately, this is physically incorrect. Nevertheless, such a formulation 
is capable in many instances of satisfying second law constraints. This is a good example of why 
satisfaction of second law constraints, although necessary, is not sufficient to demonstrate that the 
constitutive model is correct. 

It has been demonstrated that energy equations used in all current generation computer codes 
neglect the phase change flow work term, -Fk(pk/pk) i .  That is, the energy equations, which are 
expressed as balance equations for phasic average internal energy or enthalpy, use as the interfacial 
energy flux the interfacial enthalpy rather than the interfacial internal energy. It has been shown 
(Arnold 1988) that the term l ' k ( p k / P k )  i is an interfacial source of turbulent kinetic energy, and not 
an interfacial source of internal energy. The neglect of this term in the computer codes is due to 
the confusion concerning the definition of the dependent variable of the energy equation. 

To understand how this may have occurred we need to examine the energy equation; or more 
correctly, the energy equations. It is possible to distinguish three distinct types of energy and three 

Table 3. TRAC-PF1 constitutive equations for the con- 
tinuous liquid phase 

<~rL >x = 0 
T~ * = 0 
MLt = fi = Ci (<VG >xp - -  <V L >xp I <VG >xp - -  <V L >xp I 
MLp = 0 

<q~ >x = 0 

FVta = - ~ F <v~ >xp' for condensation 
(F <VL >xp, for evaporation 
f<Vo >xp, for condensation 

<VL >i = ~ (<VL >xp, for evaporation 
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distinct energy equations for multiphase flow. Herein they are called mechanical energy, turbulent 
kinetic energy and internal energy. Some consider mechanical energy to be the sum of the turbulent 
kinetic energy and what is called here mechanical energy, however, even then there are three distinct 
forms of energy. Balance equations for these three forms of energy may be derived as follows: 

• The mechanical energy equation is simply the vector dot product of the phasic 
average momentum equation with the phasic average velocity, and is satisfied 
whenever the momentum equation is satisfied. 

• The turbulent kinetic energy equation is found by subtracting the mechanical 
energy equation from the phasic average of the vector dot product of the local 
instantaneous momentum equation with the local instantaneous velocity. 

• The internal energy equation is found by averaging the total energy equation, and 
then subtracting off the mechanical energy and the turbulent kinetic energy 
equations. Alternatively, using ensemble-averaging techniques, the local instan- 
taneous internal energy equation may be directly averaged to obtain the phasic 
internal energy equation. 

Rigorous time- and volume-averaging techniques have generally relied upon a "standard" form 
of balance equation (e.g. Ishii 197S, equation V. 1.1). The averaging is performed on the generalized 
balance equation. The individual averaged balance equations are then formulated from the 
averaged generalized balance equation. This process has been used by Ishii (1975) and Drew & 
Wood (1985) as well as many others. One problem with this process is that the local instantaneous 
internal energy equation does not fit the form of the generalized balance equation. Hence derivation 
of the averaged internal energy equation must be performed using the more elaborate and indirect 
method just discussed. 

Ishii (1975) defines the effective internal energy. It is the sum of the phasic average internal energy 
and the turbulent kinetic energy. He then derives a balance equation for it by subtracting the 
mechanical energy equation from the averaged total energy equation. Ishii's internal energy 
equation is the sum of what is herein called the internal energy equation and the turbulent kinetic 
energy equations. It is a valid energy equation, however care must be taken to ensure that 
constituted interfacial sources include both interracial sources of internal energy and interracial 
sources of turbulent kinetic energy. This Ishii has done in the constitutive relations he recommends 
(Ishii 1975). 

Examination of the energy equations in all of the computer codes examined in this paper 
demonstrates a remarkable similarity between them and Ishii's internal energy equation. We 
conjecture that these energy equations were derived in a manner similar to Ishii's, and that they 
are indeed balance equations for the "effective" internal energy, and not just for the phasic internal 
energy. However, the dependent variable of these energy equations is treated as the internal energy 
(or in some cases enthalpy) and the turbulent kinetic energy component is disregarded. Thus, 
improper interpretation of the dependent variables of these equations has apparently led to the 
problems which have been discussed. 

An Acceptable Set of  Constitutive Equations 

The second law of thermodynamics cannot tell us which constitutive laws are correct, it can only 
detect which sets of constitutive equations are incompatible with specific physical requirements. An 
acceptable set of constitutive equations should: 

(1) Be reasonably brief. 
(2) Include all important effects. 
(3) Be compatible with the second law of thermodynamics. 
(4) Be compatible with the principle of objectivity (Draw & Labey 1979). 
(5) Lead to a well-posed two-fluid model. 
(6) Predict the available data. 

As an example of how the entropy constraint should be used to assess candidate constitutive laws, 
let us evaluate a proposed set. One possible set of constitutive equations is listed in table 4. Arnold 
et al. (1988) have justified the existence of  these constitutive equations using ccU model ensemble 
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Table 4. An acceptable set of liquid-phase constitutive equations for bubbly flow 

TL R~ = 0.05E ( p >~[3at U21 + a2URUR] 

<~L >" = 0 
VLi = (WE> xp + ( l  - -  r /m)U R 

< P L >  x - -  <PL>i  = 0.25(1 - E)< p L > x U  2 

nLp = E < pL >XC~m a* + 0.5Cr< pL) x DGE/DtU R - Ca< #L >XUR • VEU R 

MLt = 0.375C D U a e < PL >X/RbUR 

W~p = (1 - r /m)<pL>xUR " VE + < p L >  x D E e / D /  

+ 0.15a t (1 -- E)~( pL >~UR tr(DL) -- 0.45at (1 -- E)E < pL >~URUR : O L 

- 0.05(9a 1 + a 2) ( l - -  E )E < #L >xUR UR : ~ - J R  + ~L< PL >i/< flL >x 

qr+¢+q~=O 

W[, = 0 

<•L>i = 0 

qk=O 

<q~' >.' = --KtkLV(TL>-':v 

UL R~ = 0.025(91 a + 2a)a R U 2 

rkVki = Fk[<Vk) x° + (1 - F~m)UR] 

Fk(Vk ' Vk)i = Fk[<Vk> x°" <Vk> xp + 0.5U~ + 2(1 -- rlm)<Vk> ~p' UR] 

where 

E--volume fraction of the dispersed vapor phase 

Rb--bubble radius 

Dk/Dt--material  derivative following phase-k 

a*--objective acceleration, given by 

a* = DoVo/Dt  - DLVL/Dt + U R x V x V L 

averaging of potential flow around a spherical bubble. Unspecified coefficients are assumed to be 
sufficient to account for differences between actual flow and the idealized flow conditions used for 
the calculations. The entropy equation gives us the necessary constraints upon these coefficients. 
It should be recognized that these closure conditions are fairly simple and can be improved. 
For  example, the turbulent stresses (T R°) are only due to "bubble-induced" effects. To include 
shear-induced effects, more realistic turbulence models (e.g. T-e models) are necessary. 

Let us substitute these equations into the entropy constraint [26] and use the following relations: 

D G e / D t  = Oe/at + ( V L ) X p ' V ~  + U R . V e  = D L E / D t  + U R ' V e ,  

U R ' D L U R / D t  = U R - a *  - -  U R U  R : D L - U R U  R : V U  R 

and 

where 

F pki = F < Ok > x, 

UR = <VG >xp _ <VL >x~. 

After we do this and collect terms, the entropy equation becomes 

0.375CDE < PL >X/Rb U:R I UR I + (1 -- E)KtkL(V<Tk >~02/< Tk )~P 

-- E(pL>X<s'LV[>XP'V<TL> xp + E < p L > X a * . U R [ ( l  --  r/m)Cvm --  0.05(1 -- E)(9al + a2)] 

+ <Pk >xU~UR'VE[(1 - ~]m) - -  0"45Cn + 0.25(1 -- E) + 0.5Cr] 

+ (Pk >xu2 DLE/Dt[0.5(I -- tim)C, - 0.025(1 - E)(9at + a2)] 

+ FL<PL>~U~[0.25 -- 0.25(1 -- E) -- 0.025E(9at + a2)] 1> 0. [34t 
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The first two terms are positive definite, and, as disoussed previously, the third is assumed to be. 
Thus, we can assure that the entropy equation is always satisfied by requiring that the rest of the 
equation be equal to zero. This requirement gives us: 

9al + a2 = 10, [35] 

1 - n m = ( 1  - -  E)/2C,~, [ 3 6 ]  

- Cn + 0.25(1 - E) + 0.5Cr = 0 [37] 

and 

0.5(1 - r/m)Cr - 0.25(1 - e) = 0. [381 

The values of a~ and a2 found by inviscid flow calculations are 

a I = a 2 = 1.  

These values satisfy [35] and are recommended. There are numerous correlations available for the 
virtual mass coefficient (C~m). The correlation proposed (Ruggles et al. 1988) appears to be the best. 
Nevertheless, using any specific correlation for C~,  [35]-[37] may be solved. This gives us 

~m -m- l -- (1 -- O/2Cvm, 

C=C,~  

and 

Cn = (1 - 0 /4  + C~/2. 

SUMMARY AND CONCLUSION 

We have derived an appropriately averaged entropy equation in which derivatives of entropy 
do not occur. This entropy constraint was applied to sets of constitutive equations found in several 
state-of-the-art transient multiphase flow computer codes. It was found that all current generation 
multiphase computer codes violate the second law of thermodynamics. It was found that the 
conservation and constitutive equations used neglected some interfacial effects. In particular, an 
interracial flow work term, FL(PL/PL)i, was neglected in all codes. 

The analysis of the core's constitutive equations also demonstrated that when physicaUy-based 
terms, such as the virtual mass force, are added to the conservation equations to improve accuracy 
when analyzing accelerating two-phase flows, other terms must also be included in the energy 
equation to prevent violation of the second law. 

Examination of the entropy constraint, [26], reveals that the interfacial velocity compliance 
coefficient (~/m) is an important parameter in determining phasic dissipation. This fact has been 
recognized previously (Wallis 1969), however the donor-cell treatment of the interracial velocity 
used in most two-fluid computer codes is inadequate. 

It is important to remember that dissipative terms may be small, thus a violation of the second 
law constraints does not necessarily imply a large error in calculated parameters (e.g. flow quality). 
Nevertheless, a violation of the second law is a clear warning that the physics used in the model 
should be re-examined. 

One acceptable set of constitutive equations for a continuous liquid phase containing a discrete 
phase was presented. This set of equations had a realistic treatment of interracial effects and was 
based on rigorous averaging of the flow parameters for an idealized bubbly flow situation. While 
it was not demonstrated that this model is well-posed or agrees with the available data, it was shown 
that this set of constitutive equations is capable of satisfying the second law. 

It should be obvious that consideration of second law constraints on multiphase flow models 
is an important means for assessing those models. The approach discussed herein was restricted 
to consideration of the continuous liquid-phase conservation equations and their associated closure 
conditions. However, this approach can be readily extended to the assessment of the modeling of 
the discrete phase, as well as to models for the corresponding mixture equations and to the 



494 G.S. ARNOLD et aL 

equations of the interfacial jump conditions. Indeed, such an analysis may well be capable of 
demonstrating the incompatibility of the equal phase pressure assumption that is often used. Hence, 
the entropy constraint given by [26] appears to be a very useful method of filtering out unacceptable 
two-fluid modeling assumptions. 
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